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Abstract 

Soil is a critical component of terrestrial ecosystems, playing an invaluable role in supporting plant 

growth, regulating water and nutrient cycles, filtering pollutants, and providing habitat for soil 

organisms. However, increasing pressures from human activities, including intensive agriculture, 

deforestation, urbanization, and climate change are degrading soils across the world. Therefore, 

sustainable management of soil resources is imperative to ensure continued provisioning of 

ecosystem services, promote sustainable development outcomes, and help us to achieve the UN 

Sustainable Development Goals (SDGs). This paper reviews literature across multiple disciplines 

to examine the vital links between soil and realization of the SDGs. Soil properties influence 

productivity and food security, water availability and quality, climate regulation through carbon 

storage, biodiversity conservation, and human health. Degraded soils undermine these ecosystem 

services, exacerbating poverty, hunger, and inequality. Research shows ecosystem-based 

approaches that prioritize soil health, including conservation agriculture, agroecology, and 

regenerative systems, can sustainably intensify agriculture while restoring multi-functionality. 

Additionally, nature-based solutions utilizing plant-soil interactions for restoration have 

demonstrated cost-effectiveness. Achieving land degradation neutrality is now an explicit target 

under the United Nations Convention to Combat Desertification (UNCCD), emphasizing the need 

to scale soil-focused initiatives within the SDG framework. Therefore, protecting and restoring 

global soil assets can serve as a nexus in policy frameworks to simultaneously advance progress 

across multiple SDGs. 
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1. Introduction 

The complex, dynamic soil ecosystem is at 

the interface of the lithosphere, biosphere, 

atmosphere, and hydrosphere. Soils 

regulate elemental cycles of carbon, 

nitrogen, and phosphorus and water flows, 

as well as enable the establishment of 

agricultural crops, woods, and grasslands 

that sustain life [1–3]. Soils filter 

contaminants and waste from percolating 

water, store water and nutrients for plants, 

and house complex soil biota that recycle 

organic materials. Soil quality and health 

determine how well soil provides 

ecological services. Globally, land use 

changes and unsustainable land 

management are diminishing soils' ability 

to supply these services [4–6]. 

Meeting food, fiber, and fuel demands will 

strain soil resources as the global 

population reaches 9.7 billion by 2050 [7, 

8]. Maintaining the multi-functionality of 

global soil assets will help achieve key 

international policy goals like reducing and 

adapting to climate change, protecting 

biodiversity, increasing food security, and 

other Sustainable Development Goals 

[9,10]. There are growing requests to 

clearly recognize the links between soil 

health and sustainable development [11]. 

With 2015-2024 declared the International 

Decade of Soils by the UN, sustainable soil 

management policies and programs are 

being implemented worldwide [12]. 

This research synthesizes major literature 

from several fields to analyze how soils 

affect multiple UN SDG-related sustainable 

development outcomes. Section 2 

addresses soil conditions' effects on 

ecosystem service provisioning, focusing 

on SDGs 2 (zero hunger), 6 (clean water 

and sanitation), 13 (climate action), 14 (life 

below water), and 15 (life on land). Section 

3 reviews conservation agriculture, 

agroecology, and regenerative systems 

literature on sustainable soil management. 

Section 4 examines UNCCD, EU Green 

accord, and Farm to Fork strategy policy 

frameworks and land degradation neutrality 

progress. Section 5 ends by recommending 

key areas for scaling soil-focused activities 
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to accelerate SDG fulfillment in integrative 

policy frameworks. 

 

2. Sustainable Development Goals and 

Soil Ecosystem Services 

Soils provide provisioning, regulating, 

sustaining, and cultural ecological 

functions that directly and indirectly benefit 

humans [13]. Soils provide food and 

nutrition security by growing 95% of global 

food output, animal fodder, timber, and 

bioenergy crops [8]. Well-structured, 

nutrient-balanced, water-retentive soils 

boost agricultural productivity and climate 

resilience [14,15]. Pesticides and industrial 

chemicals in root zone water are filtered 

and decomposed by soils, regulating 

contamination of ground and surface water 

[16]. Soil organic matter (SOM) from 

decomposing plant and animal leftovers 

can store enormous amounts of 

atmospheric CO2 when stabilized by soil 

particles and aggregates [17]. Soils contain 

twice as much carbon as the atmosphere, 

and restoring degraded lands allows for 

‘negative emission technologies’ [18]. Soil 

biota, microorganisms, and animals drive 

biogeochemical processes that cycle 

nutrients, create SOM, and build soil 

structure for self-sustaining soil fertility 

[19]. Maintaining or improving global soil 

assets' multi-functionality through 

sustainable management can assist achieve 

various SDGs, as stated below. 

2.1. Zero Hunger SDG 

Soil quality and fertility determine biomass 

productivity in croplands, pastures, and 

forests, which support agriculture and food 

production. Multiple studies show that soil 

organic matter, nutrient availability, water 

retention capacity, and crop yields are 

positively correlated [14, 20]. Over time, 

bedrock weathering supported ecosystem 

productivity during dry years, 

demonstrating that deeper soil layers affect 

resilience [1]. Erosion, salinization, and 

nitrogen depletion can harm crop growth 

and yields [21]. World Bank estimates land 

degradation affects world crop earnings by 

7 billion USD, hurting 1.3 billion people, 

primarily small-holder farmers [22]. 

Thus, SDG 2's goal of ending hunger and 

malnutrition requires healthy soils. To 

fulfill rising food demands without 

expansion or land use change, sustainably 

improving farmland productivity closes 

yield gaps [7]. Sustainable agricultural 

intensification (SAI) emphasizes soil health 
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management for climate-smart, resilient 

agriculture [23, 24]. SAI conservation 

methods including cover cropping, crop 

rotations to replenish SOM, and integrated 

soil fertility management increase yields on 

small farms and big businesses [25]. Thus, 

data strongly suggests sustainable soil 

management can boost local and global 

food security. 

2.2 Clean Water and Sanitation SDG 6 

Soils greatly influence terrestrial ecosystem 

water resource quality and availability by 

regulating water infiltration, storage, 

drainage, and purification. Poorly 

structured soils impede infiltration, 

increasing surface runoff and erosion 

concerns, especially after heavy rains. 

Increased sediment and nutrient loads into 

water bodies require larger water treatment 

investments for home, municipal, and 

industrial usage [26]. Soil health and 

vegetative cover restoration are cost-

effective watershed management and 

source water protection measures [27]. 

Through irrigation and drainage 

infrastructure and modifying tillage 

practices, soil management influences 

ground and surface hydrological flows in 

agricultural environments [28]. Even after 

repair, soil degradation reduced water 

retention after 7 years of warming tests 

[29]. Conservation agriculture, residue 

retention, and erosion control can boost 

precipitation absorption in water-scarce 

regions like the Mediterranean [30]. Soil-

focused initiatives support SDG 6's water 

resource conservation, security, and quality 

goals. 

2.3. Climate Action SDG 13. 

Soil organic matter, the greatest terrestrial 

carbon sink, regulates global carbon cycles 

and temperature. While lithology and 

climate are important regulators, vegetation 

and land use changes greatly affect SOM 

formation and turnover, affecting soil 

carbon storage [31]. SOM stabilization and 

mineralization are balanced by plant and 

microbial inputs after carbon saturation. 

Unsustainable land management 

accelerates SOM decomposition, 

decreasing cropland and grassland soil 

carbon stores worldwide [32]. 

Clearing native vegetation for agriculture, 

overgrazing pastures, excessive tillage, 

mono-cropping, and insufficient residue 

return damage soil structure and release 133 

gigatons of carbon from SOC reservoirs 

[33]. Soil degradation causes 12-14% of 
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global greenhouse gas (GHG) emissions, 

hindering SDG 13 climate change 

mitigation [34]. This has increased 

attention on sustainable soil management to 

reduce agricultural emissions and absorb 

atmospheric carbon. Adopting excellent 

management practices might sequester over 

4 per 1000 or 0.4% of global carbon stocks 

annually [35]. Soil-centric Negative 

Emission Technologies that increase SOC 

can reduce global warming by 10% with 

supportive policies [36]. 

2.4 SDG 14—Life Below Water 

Although soil management and SDG 14 

marine conservation targets are less direct, 

terrestrial processes strongly impact coastal 

and ocean ecosystem health [37]. 

Unsustainable farming methods cause soil 

erosion, nutrient runoff, hypoxic zones, 

algal blooms, and eutrophication in 

estuarine and marine ecosystems [38]. 

Sediment loads harm reef ecosystems. 

Conservative estimates put over 20% of 

coral reefs at high or very high risk from 

soil erosion and land runoff [39]. 

Improving soil health and vegetation cover 

reduces agricultural nitrogen and sediment 

loads, improving downstream water quality 

[40]. Catchment actions like erosion 

management and revegetation reduce river 

sediment fluxes even during tropical 

cyclones [41]. Regenerative techniques can 

reduce soil-nutrient-water flows to fragile 

aquatic systems by reducing external inputs 

and improving recycling. Sustainable soil 

management supports SDG 14 marine 

biodiversity and habitat protection targets 

with many co-benefits. 

2.5. SDG 15:  

Life on Land Soils maintain complex food 

webs for almost 25% of global biodiversity, 

including bacteria, fungi, arthropods, 

earthworms, and other animals [42]. Soil 

organisms drive biogeochemical processes 

that mobilize and cycle nutrients, turnover 

SOM, build soil structure, and maintain 

fertility [43]. Intensively managed 

agricultural soils are losing below-ground 

biodiversity due to habitat fragmentation 

and pesticide use. [44]. Functional diversity 

loss and soil food web structure changes 

reduce long-term ecological services [45]. 

Soil quality and land management 

indirectly affect above-ground ecosystems 

and biodiversity. Alpine meadow plant and 

microbial diversity was positively and 

negatively affected by 7 years of diurnal 

asymmetric warming trials [46]. Grazing 
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intensity and timing control can change 

plant functional group competition and soil 

biota habitat compatibility [47, 48]. Human 

activities like nitrogen fertilizer and 

industrial pollutants modify soil pH, 

threatening grassland biodiversity [49]. 

Soil biodiversity must be protected and 

managed sustainably to conserve and 

restore terrestrial ecosystems, an SDG 15 

goal [50]. Landscape heterogeneity and 

habitat connectedness promote gene flows, 

building evolutionary robustness and 

supporting endemic species [51]. 

Functional biodiversity-based agroecology 

and organic methods have improved soil 

health and above-ground productivity [52]. 

The research strongly recommends 

integrating soil biological processes into 

conservation planning and biodiversity 

policy frameworks. 

 

3. Sustainable Soil Management 

Systems 

Solving global soil resource concerns 

requires holistic approaches due to soils' 

cross-cutting links to ecosystem services 

and sustainable development. Integrating 

ecology, sustainable land management, 

climate change adaptation, and circular 

economies might assist regenerate soil 

functions that support human well-being 

[53]. Key literature on techniques and 

management systems that improved soil 

health and restored multi-functionality in 

agricultural landscapes globally is 

discussed here. 

3.1 Eco-agriculture 

Conservation Agriculture (CA) uses 

minimal soil disturbance, permanent soil 

cover with crop residues, and crop rotations 

and associations to achieve sustainable and 

profitable agriculture and improve farmer 

livelihoods [54]. CA techniques increase 

soil organic matter, water penetration, and 

retention, making them more drought-

resistant than conventional farming [55]. 

Meta-analyses demonstrate CA boosts 

global topsoil carbon [56]. Long-term 

conservation tillage increased soil 

microbial diversity, including bacteria, 

fungi, and protozoa [57]. 

CA systems improve crop yield variability 

under rainfall fluctuation by lowering 

erosion hazards and enhancing rainwater 

utilization efficiency [58]. In most cases, 

avoiding plowing and saving fuel offset 

higher labor and pesticide expenses [59]. 

Despite the benefits, residue retention, 
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weed management, and small-scale farmer 

equipment issues continue to slow uptake. 

Optimizing synergistic CA-compliant 

techniques for wider adoption across varied 

agroecosystems requires more research. 

3.2 Agri Ecology 

Ecological principles are used to create 

sustainable food systems that balance 

environmental, economic, and social 

sustainability [60]. Agroecology recycles 

nutrients, energy, and wastes like natural 

processes to increase biodiversity [61]. 

Crop rotations, crop-livestock integration, 

intercropping, agroforestry, and organic 

methods reduce synthetic inputs by creating 

healthy soils. Many agroecology 

approaches complement conservation and 

regenerative agriculture. 

Studies show multi-functional biodiverse 

systems boost plant-microbe interactions 

for nutrient mobilization and pest 

management [62, 63]. Diversified systems 

can match conventional agriculture outputs 

while increasing soil carbon storage for 

climate adaptation and mitigation [64]. 

Agroecology transitions increase women's 

participation, which could change rural 

gender relations [65]. However, insufficient 

policy support for ecological techniques 

limits agroecology scaling. Traditional 

knowledge and smallholder farmer 

participatory innovation processes must be 

integrated to overcome socio-economic 

constraints [66]. 

3.3, Regenerative Agriculture 

Regenerative Agriculture “farming and 

grazing practices that, among other 

benefits, reverse climate change by 

rebuilding soil organic matter and restoring 

biodiversity” [67]. Comprehensive land 

management methods include conservation 

agriculture, integrated crop livestock 

systems, silvopastoral systems, 

agroforestry, and others improve farm 

ecosystem health. Minimizing physical 

disturbance, rotating and intercropping 

plants, avoiding synthetic pesticides, and 

actively establishing soil biotic ecosystems 

are key [68]. 

Integrating adaptive multi-paddock grazing 

with seasonal high-density herd 

movements replicates migratory patterns 

for appropriate recuperation [69]. Nutrient 

density and availability increase over time 

by increasing root exudates feeding soil 

microorganisms, lowering inorganic 

fertilizer use [70]. Mixes of cover crop and 

cash crop rotations rebuild SOM, retain 
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water, and support pollinators to promote 

production [71]. Regenerative methods can 

cost-effectively sequester nearly 1 tons of 

CO2 per acre annually, reversing soil 

carbon losses [72]. However, absence of 

consistent verification techniques hinders 

uptake and policy support. Mainstreaming 

involves supply chain partnerships and 

farmer incentives to go beyond yield-

focused systems [73]. 

 

4. Policy Frameworks Supporting 

Sustainable Soil Management 

Given the strong links between soil health 

and ecological services, land degradation 

neutrality is a global policy goal. Land 

degradation neutrality combats predicted 

losses from land use and climate change to 

maintain or improve ecosystem services 

[74].  

4.1 The UN Convention to Combat 

Desertification 

To support livelihoods and human 

wellbeing, the UNCCD, the main 

international framework for land 

degradation, prioritizes soil health 

restoration. The SDGs' Land deterioration 

Neutrality (LDN) aim requires preventing 

additional deterioration and repairing 

degraded soils. Over 20% of global 

vegetated areas have declined over the past 

20 years [75]. Urgent action is needed to 

address species extinction, poverty, and 

carbon emissions from ecosystem 

productivity loss. The UNCCD Global 

Land Outlook study adds that local context 

and participatory monitoring are crucial to 

restoration success [76]. 

Analysis suggests cost-effective strategies 

such agroforestry, conservation agriculture, 

and native species pasture regeneration are 

not widely used [77]. Poor institutional 

coordination between agriculture, soil, 

water, forestry, and climate change 

agencies hinders LDN activities [78]. LDN 

can be accelerated by eco-schemes that 

reward farmers for soil-based carbon 

sequestration. The need to substantially 

scale land restoration activities and 

empower marginal and small holder 

farmers through well-aligned incentives 

and capacity training is widely agreed upon 

[79]. 

4.2 EU Farm-to-Fork and Biodiversity 

Strategies 

The recently agreed Farm to Fork (F2F) and 

Biodiversity policies set high goals for 

regional food systems and land 
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management as part of the EU's Green Deal 

[80]. The F2F technique promotes organic 

farming and reduces chemical inputs and 

soil hazards [81]. To harmonize monitoring 

and evaluation frameworks for comparing 

regional progress on erosion, organic 

matter decline, compaction, salinization, 

and soil sealing trends, EU-wide soil health 

definitions and indicators are proposed by 

2021 [82]. 

Through buffer strips, rotational fallow, 

hedges, and other high-diversity landscape 

features, the Biodiversity Strategy intends 

to restore 10% of agricultural land by 2030. 

Conservation management will encompass 

30% of croplands and grasslands [83]. 

Recently developed earth observation, 

remote sensing, and digital soil mapping 

technologies will be used to monitor 

biodiversity reductions and identify priority 

intervention zones [84]. 

Regenerative agriculture based on soil 

health is also discussed. The F2F and 

Biodiversity plans set production and 

consumer sustainability goals, although 

discussions remain over CAP reforms in the 

region. Harmonizing suggested eco-

schemes under the new CAP to give enough 

incentives for farmers across member states 

to embrace soil conservation measures 

including no-till systems, erosion control, 

integrated nutrient management, etc. [85-

87]. The proposed CAP amendments also 

aim to give at least 35% of budgets to 

climate, environment, and animal welfare 

eco-schemes. 

Targets, indicators, and monitoring 

frameworks offer hope for a reinvigorated 

policy environment to fund soil 

sustainability projects [88]. Flexible 

procedures for participatory planning and 

decentralized decision making can help 

nutrition-sensitive, regenerative agriculture 

succeed [89, 90]. To guarantee universal 

acceptability and compliance, trade-offs 

between socio-economic viability and 

ambitious environmental requirements 

must be considered. 

 

5. Case Study  

The study investigated surface soil samples 

from varied farmed areas in India to build 

regional databases and examine soil 

nutrient constraints. K, S, and Zn/Fe 

deficiencies were most severe in 30-62% of 

samples. In contrast, most samples had 

adequate P, Mn, and Cu. Significant 
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positive connections of OC with P, K, S, 

and Fe show its major role in soil quality. 

PCA explains >73% of pH, EC, OC, P, K, 

and S variability. Outputs assist detect 

regional soil fertility limits. To maximize 

crop yields, provide insufficient nutrient 

supplements locally. The findings can be 

used to create soil test-based fertilizer use 

efficiency recommendations for Indian 

agriculture. Future studies should evaluate 

crop responses, production gaps, and 

needs-based balanced nutrition decision 

support tools. 

Collins and Page (2019) suggest that 

fertility rates are heritable, making world 

population stabilization difficult and rising 

food and resource demand [91]. Bongaarts 

(2019) outlines the global biodiversity and 

ecological services assessment, revealing 

unparalleled biodiversity reduction [92]. 

Several studies propose sustainable 

intensification of agriculture to boost food 

production while reducing environmental 

effect. Xie et al. (2019) evaluates 

sustainable intensification research 

prospects, while Cassman and Grassini 

(2020) present a worldwide perspective 

[93-94]. Bangash et al. (2013) examine how 

climate change affects Mediterranean river 

water delivery and erosion control [95]. 

Nielsen et al. (2011) emphasize soil 

biodiversity for carbon cycling. Biological 

diversity loss affects ecological activities 

including carbon cycling [96]. 

Agrobiodiversity use and conservation in 

agricultural environments are discussed by 

Jackson et al. (2007) [97]. In their 2020 

assessment, Newton and Schreefel define 

and explain regenerative agriculture, which 

restores soil health [98-99]. 

Davis (2008) concludes with an assessment 

of sub-Saharan African agricultural 

extension strategies and prospects, which is 

essential for spreading sustainable farming 

[100]. 

 

6 Conclusions 

This research systematically analyzed 

relevant studies linking soil health to 

ecosystem services like climate regulation, 

water security, food production, 

biodiversity protection, and human 

livelihoods and well-being. Soils underpin 

most SDG targets, yet present degradation 

trends severely harm terrestrial ecosystems. 

The evidence suggests that degraded soils 

reduce production, intensify climate 
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change, and increase poverty and 

malnutrition in emerging regions. Soil 

erosion, salinization, and fertility 

reductions indirectly harm coastal 

conservation and water supplies. 

Sustainable soil management methods 

including conservation agriculture, 

agroecology, and regenerative farming 

systems provide many benefits over input-

intensive methods, according to research. 

Sustainable organic matter, biological 

nutrient cycling, and soil biodiversity 

enable resilient, climate-smart agriculture 

for local and global communities. 
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